

MZ:2008:4

Mission Report

From a short-term mission on

Visual Basic 2005 Express in connection with Data modelling
and SQL and some NADABAS

7-10 July 2008

TA for the Scandinavian Support Program to Strengthen the
Institutional Capacity of the National Statistics, Mozambique

Søren Netterstrøm

Instituto Nacional de Estatística

This report contains

restricted information

and is for official use only.

Ref. No.

 1

Table of contents

Executive summary ... 2

Appendix 1: ... 3

Objective.. 4

Expected results ... 4

Activities.. 5

Appendix 2: A simple database application in VB.NET... 6

Getting started .. 6

Making first part of the UserInterface.. 7

Loading data 7

Adding Navigation. 8

Handle Updates 9

Making a more robust application 13

Handling data errors 16

Empty database 18

 2

Executive summary

The primary purpose of this mission was to give training in the use of Visual Basic

.NET for building applications against an SQL Server database.

This was carried out as a set of morning sessions, where the principles of Object

Orientation, that is the core of VB .NET, was covered and then a simple DB

application was build to demonstrate the capacities of VB .NET.

This course can only serve as an introduction to VB .Net. To really exploit any tool

like VB .NET, requires practicing over some time gradually building more complex

application and learning those components that are needed on the way. Developing

application in a system like VB .NET will normally involve a significant amount of

self training, using the help facilities of VB .NET, relevant study material as available

or searching the Internet for relevant information and then doing some experiments.

Then gradually you may build of your own toolbox.

The secondary purpose of the mission was to give assistance on the use of

NADABAS. Some minor problems were resolved and a minor change to NADABAS

was introduced for more smooth operations.

 3

Appendix 1:

TERMS OF REFERENCE

for a short-term mission on

Visual Basic 2005 Express in connection with Data modelling and SQL

and some NADABAS

7 – 11 July, 2008

within the Scandinavian Assistance to Strengthen the Institutional Capacity of

INE/Mozambique

Consultant: Søren Netterstrøm

Counterparts:Tomas Bernardo, Anastácia Judas Honwana and more staff at DISI.

Plus also during some time Monica Magaua and others at DCNIG/CN.

Background

It was originally the plan for INE to develop a Data Warehouse system based on 3

database components: A Micro Data Warehouse, A Macro Data Warehouse and a

Dissemination Database.

The Dissemination Database is already up and running based on the Scandinavian PC-

Axis / PX-Web platform, also used by FAO.

The Data Warehouse strategy and a road map for implementation is described in

greater detail in a Short Term Mission on Data Modelling 31 January - 4 February

2005 by Søren Netterstrøm, MZ:2005:08. The mission then was directed at Anastacia

Honwana, Clara Panguana, the developer group at DISI and the LTA on IT Karsten

Bormann. The report by Lars Thygesen a Short Term Mission It Management and

Strategic IT use from September 2006, MZ:2006:10, recommends increased focus on

the Data Warehouse. However a need for a more practical / hands approach and

training in the related subjects of Data modeling and working with Databases is

recognized by INE (DISI) and therefore a mission on Data modeling and SQL was

discussed and requested during the visit by Lars Erik Gewalli in November 2006. A

mission on this theme was also done 19/2 – 1/3, 2007, MZ:2007:03. The now

proposed mission can be seen as a direct continuation of the previous ones and has the

advantage of being directly preceded by a mission on Data Modelling and SQL. The

mission will also, if necessary, spend up to one day on following up previous missions

on NADABAS, the last one described in MZ:2007:10.

A full database system managed with a general language as VB will give INE

opportunities to store and backup data in a more efficient manner and to assign

different data access rights do different people inside INE.

Also the “though” data management discipline which is a part of full scale database

systems will help improve the data quality of INE’s surveys. Further more an

 4

increased used of databases will allow INE to develop more ad hoc Client – Server

applications.

As a low cost but high tech introduction to database technology is suggested to use the

Microsoft MS-SQL 2005 and Visual Basic 2005 in the Express versions. These are

provided free of charge by Microsoft and has all the functionality of Microsoft’s

commercial versions. There are limitations in the amounts of data that it is possible to

store in Express version. However for training and familiarization purposes the

Express version is more than sufficient.

In order to provide INE with a practical skill building it is planed to build a series of

missions around one or two development cases. Each case should lead to a working

database.

SDMX is based on XML and XSLT is recommended that training is also provided in

this field to INE staff before the end of the year. CPI and National Account data are

the data most likely to be requested by international organizations in SDMX-ML. INE

may therefore like to enter data from these two subject areas in to a Micro / Macro

Data Warehouse model before the end of 2007.

Drawing on Visual Basic and XML it should then be possible for INE to construct a

Web service with data in the SDMX-ML format.

Also the LTA on IT left INE by the end of August 2007. Instead it was planned to

have a series of short term mission providing INE with gap filling, reflections,

discussions and second opinions in the area of IT. This mission should be seen in this

context.

Objective

The objective of this mission is to strengthen the practical and theoretical knowledge

of data handling at INE, through the use of real data from the Consumer Price Index

as a case for the work with VB 2005 Express on a database in MS-SQL 2005 Express.

To demonstrate basic functions in the VB language to extract, manipulate and present

data from the database.

The mission is strictly related to the previous SQL mission and will, through hands on

training, show how data is entered and extracted to a database from other file formats.

Expected results

• A revision of the MS Visual Basic 2005 Express Installation at a number of

workstations for training purposes

• An introduction/repetition of basic OOP concepts like inheritance,

polymorphism e encapsulation as well as objects, classes, etc.

• An introduction/repetition of basic VB concepts

 5

• A continuation in the exploration of the VB language by implementation of a

real subsystem using the database structure built during the previous SQL

course, with MS-SQL Express as the database behind..

• Additional practice with VB as a tool to extract data from MS-SQL, Access

and CSV files

• Mission report that comments on the objectives and achievements and include

recommendation about of the next steps on improving the general modeling

and programmatic skills inside INE

Activities

• A handover from the recent SQL mission will be done in Copenhagen before

the arrival to Maputo.

• On the Monday there will be a meeting with the counterparts on the objectives

and expectations of the mission. Some work will also be done at the national

accounts department, to solve any outstanding issues regarding NADABAS.

• The rest of the week: Classes / Workshops on Data modeling, VB 2005

Express and its relations to a basic SQL environment will be conduct on 4

working days (Tuesday to Friday). The workshops will be from 8.30 to 12.00.

They will consist of a combination of short technical / theoretical briefings

followed by hands on experience.

• A meeting towards the end of the mission with Counterparts to present and

discuss the results and recommendations

Tasks to be done by INE to facilitate the mission

• Elaborate ToR for the mission

• Invite and prepare the participants of the course

• Prepare a sufficient number of computers for the training

• Prepare and supply the consultant with necessary documents and information, such

as mission reports, strategies, plans etc.

• Supply good working conditions for the consultant

Consultant and Counterpart

Consultant: Søren Netterstrøm

Main counterparts: Tomas Bernardo, Anastácia Judas Honwana and more staff at

DICRE/DISI.

 But also Monica Magaua at DCNIG/CN.

Timing of the mission

See above.

Report

The consultants will prepare a draft report to be discussed with INE before leaving

Maputo. They will submit a final draft to INE for final comments within one week of

the experts have returned to work. Statistics Denmark as Lead Party will print the

final version within 3+ weeks of the end of the mission. The structure of the report

should be according to Danida format.

 6

Appendix 2: A simple database application in VB.NET

This is a guide to produce a simple application in VB.NET, that will connect to a

database (SQL Server or MS Access) and display data one row at a time, with the

option to edit rows, insert new rows and delete rows. It is based on Visual Basic 2005

Express Edition.

Before you start, you should copy Aggregado.mdb (MS Access) to your computer.

Getting started

Start Visual Basic 2005 Express Edition and create a new windows project.

The first step is to create a data source to be used be used by the application.

For MS Access:

From the menu select Data and Add new data source

Select Database from the Wizards first page and press Next

From the next page, select Make New Connection, select Microsoft Acces as type and

use Browse to locate your database (Aggregado.mdb). Press Next.

Answer no to copy the file to your project.

Next page (save connection string) just press Next.

On next page, select the table Aggregado. Press Finish

The wizard is now completed.

Both MS Access and SQL Server (Express)

Press the Tab for Solution explorer. This should AggregadoDataSet.xsd. Double

click this.

You can now see how the dataset is described.

If Properties are not visible, press F4 to view properties.

Look at the property for ID. Default vaule is <DBNull>, and this is not good. Delete it

(leaving an empty string.

Do the same for all the columns.

Check that the AggregadoTable Adapter has a DeleteCommand, InsertCommand and

UpdateCommand.

 7

Close the window.

We have now established a data source that VB.NET will use to build the code for

communication with the database.

Actually, what we have is a new namespace containing a number of new classes that

we will use.

Making first part of the UserInterface

Go back to solution explorer and doubleclick on form1.VB

It should look like this

Show properties (F4) and name the boxes txtID, txtAE, txtAGREGFAM, txtF1, txtF2

and txtF3 to give them some usefull names.

Loading data

Right click the form and select Show code, to see the Code Window.

Enter code, to get this

Public Class Form1

 Private dataset As New

AggregadoDataSetTableAdapters.AgregadoTableAdapter

 Private datatable As New AggregadoDataSet.AgregadoDataTable

 Private row As AggregadoDataSet.AgregadoRow

 Private CurrentRow As Integer = 0

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 dataset.Fill(datatable)

 row = datatable.Rows(CurrentRow)

 Showdata()

 End Sub

 8

 Private Sub Showdata()

 Me.txtID.Text = row.ID

 Me.txtAE.Text = row.AE

 Me. txtAGREGFAM.Text = row.AGREGFAM
 Me.txtF1.Text = row.F1

 Me.txtF2.Text = row.F2

 Me.txtF3.Text = row.F3

 End Sub

End Class

Now you start to use your new classes

Dataset is a TableAdapter that takes care of all communication to the Database.

Datatable is an object that contains data from the database table, as a collection of

rows. This is the data we are going to use in the application.

Row is an object with data from a single row in the database.

Currentrow is used to keep track of which row is actually displayed. As we will start

with the very first row, it is set to 0, because the Rows collection in the datatable

(containing all the rows) is zero based.

When the form loads dataset.fill(datatable) uses the fill method of the TableAdapter

to load data into the datatable.

Then we set row to be a pointer to the first row in the table.

Showdata is made as a subroutine, as we are going to use the same code a little bit

later, as we browse through the data. It does simply copy the data from the row object

to the textboxes on the screen.

Note the Me.txtID.text. It could be txtID.text as well. However using Me.

Immideatly gives us a list of all attributes, methods and events of Me (the form), and

we avoid making spelling errors for the actual names of the fields.

Test

It is now times to make the first test of the application.

As we go along, this instruction will appear frequently as it is a good idea to test each

part of the application as we go, just to make sure we are on the right track.

Use the debugging options (setting breakpoint, making watches) to get more

information about what is going on as needed.

When you start the application, you should se the content of the first row of the

database on the screen. If you do, everything is OK.

Adding Navigation.

We will add two Pushbuttons to the screen and name them btnNextRow and

bthPrevRow as this

 9

Doubleclick Next row to go to the code and add this code:

 Private Sub btnNextRow_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnNextRow.Click

 CurrentRow += 1

 row = datatable.Rows(CurrentRow)

 Showdata()

 End Sub

This should increase CurrentRow by 1, then change row to point to the next row and

then show the data on the screen.

Similar for Previous row, go back to designer, double_click and add this code

 Private Sub btnPrevRow_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnPrevRow.Click

 CurrentRow -= 1

 row = DataTable.Rows(CurrentRow)

 Showdata()

 End Sub

Test. Click a few times on Next Row to see the data change and similar on PrevRow.

If you click to many times, you are likely to get an exception, because you try to go

after the last record or before the first. We will fix that problem later. The important

thing here is, that you can navigate through the rows.

Handle Updates

You can change data on the screen, however, that will not in itself change the data in

either row or datatable or in the database.

We need to add another set of pushbuttons, btnSave and btnCancel. With btnSave, we

will save the data into the database. With btnCancel, we will restore the data using the

data from row (the original data).

 10

and as before add code

 Private Sub btnSave_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnSave.Click

 row.BeginEdit()

 row.ID = Me.txtId.Text

 row.AE = Me.txtAE.Text

 row.AGREGFAM = Me.txtAGREGFAM.Text

 row.F1 = Me.txtF1.Text

 row.F2 = Me.txtF2.Text

 row.EndEdit()

 dataset.Update(datatable)

 datatable.AcceptChanges()

 End Sub

This codes first copies the data from the screen back to the row (that is the datatable).

It starts with row.BeginEdit(), to tell the row edit that we are starting to modify the

row, it then copies the data and then row.EndEdit(), telling he row that we have

finished to modify.

It then call the tableadapter with dataset.Update(datatable). The tableadapter

now scans the datatable for any modifications and updates the database with these

changes. This may include new rows, rows to be deleted etc, as you shall se later.

Finally we clean up datatable using datatable.AcceptChanges() that does remove

all flags for changes in the datatable, since it is now synchronised with the database.

To cancel any changes use this code

 Private Sub btnCancel_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnCancel.Click

 Showdata()

 End Sub

We simply take the original data from the datatable and put them on the screen again.

Test Modify the first record, be aware, that you keep same number of digits to avoid

errors and don’t modify ID (even if you could do it, but you may get duplicate key

error). We handle errors later on. Press Save to modify the database, then close

application and start it again, to see that the data really was changed in the database.

You may also use the object browser for this. Try it out.

 11

Test the cancel button as well.

Insert and delete records

We again add a few buttons, btnNew and btnCancel

To insert a record, we use New, that is going to give us a blank screen, where we can

enter the data. We will then press Save to actually insert the data or Cancel to get rid

of this and show the last record again.

Change the declarations at the top (just after currentrow) to include

Private InsertMode As Boolean = False

and insert this code

 Private Sub btnNew_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnNew.Click

 row = datatable.NewAgregadoRow

 Showdata()

 InsertMode = True

 End Sub

The datatable.NewAgregadoRow returns a row object, where all fields are filled with

the default value. That’s why we changed then the data source at the begging of this

exercise. We then simply display this empty row. And then we use Insert mode to tell

we are actually not dealing with a record from the datatable.

The row returned by datatable.NewAgregadoRow is not included in the datatable so

far.

We now need to modify the btnSave_Click to deal with a new row

 Private Sub btnSave_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnSave.Click

 If Not InsertMode Then

 row.BeginEdit()

 End If

 row.ID = Me.txtId.Text

 row.AE = Me.txtAE.Text

 row.AGREGFAM = Me.txtAGRFAM.Text

 row.F1 = Me.txtF1.Text

 row.F2 = Me.txtF2.Text

 If Not InsertMode Then

 row.EndEdit()

 Else

 datatable.AddAgregadoRow(row)

 CurrentRow = datatable.Rows.Count - 1

 End If

 InsertMode = False

 dataset.Update(datatable)

 datatable.AcceptChanges()

 End Sub

 12

We do not need to call BeginEdit()and EndEdit()for the new row we got in

btnNew. But, after moving data to the row we need to add the row to the row

collection in the datatable. This is what datatable.AddAgregadoRow(row) will do. It

will become te last row in the collection, so we now make it the current row

CurrentRow = datatable.Rows.Count – 1 (zero based). We also tells that we are

no longer in InsertMode. Then we update and accept the changes.

We also need to modify btnCancel_Click

 Private Sub btnCancel_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnCancel.Click

 If InsertMode Then

 row = datatable.Rows(CurrentRow)

 End If

 Showdata()

 End Sub

If we are in Insert mode, we set row to point to the last row we displayed (that is still

current row). And then show as before.

To delete a record, we simply press delete. We then need this code

 Private Sub btnDelete_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnDelete.Click

 row.Delete()

 dataset.Update(datatable)

 datatable.AcceptChanges()

 If CurrentRow > datatable.Rows.Count - 1 Then

 CurrentRow = datatable.Rows.Count - 1

 End If

 row = datatable.Rows(CurrentRow)

 Showdata()

 End Sub

First we mark the row to be deleted, then we update the database and accept changes.

No we have to display the row, that was next to the deleted row, if the deleted row

was not the last. The next row actually has now moved up, so currentrow will be the

number for this row. If currentrow is larger than the number of rows – 1, then it was

the last row, and we display the new last row by setting currentrow.

Then set row to point to the row and show the data.

Test Try to insert some records.New, type data and Save. ID should be higher than 4

(to avoid dublicates) , the next two at most 3 chars and the last three 1 character.

Close and restart to test, that the database really was updated as before. Try to delete

some and test again database. Last try to insert and use cancel.

 We have by now an application than has all the functionality we required from start.

We can browse, edit, insert and delete records. However, the user has to take care,

you can navigate outside the scope of rows, you may enter insert and then navigate, in

best case getting some strange result.

 13

We need to improve the robustness of the application, so the system will not crash do

to a simple error by the user.

Making a more robust application

We are going to do this, by making sure, that we can only use the buttons where they

apply. If we are showing the first record, we should not be able to navigate further

back, if we show the last we should not be able to move ahead. If we have pressed

new, we should only be able to use Save or Cancel to finish.

The same is true if we start to edit a record.

To do this we need first to add the following routines

 Private Sub EnableSave()

 Me.btnSave.Enabled = True

 Me.btnCancel.Enabled = True

 Me.btnDelete.Enabled = False

 Me.btnNew.Enabled = False

 Me.btnPrevRow.Enabled = False

 Me.btnNextRow.Enabled = False

 End Sub

 Private Sub DisableSave()

 Me.btnSave.Enabled = False

 Me.btnCancel.Enabled = False

 Me.btnDelete.Enabled = True

 Me.btnNew.Enabled = True

 EnableNavigation()

 End Sub

 Private Sub EnableNavigation()

 If CurrentRow = 0 Then

 Me.btnPrevRow.Enabled = False

 Else

 Me.btnPrevRow.Enabled = True

 End If

 If CurrentRow = datatable.Rows.Count - 1 Then

 Me.btnNextRow.Enabled = False

 Else

 Me.btnNextRow.Enabled = True

 End If

 End Sub

EnableSave enables the use of Save and Cancel, DisableSave disables these

buttons.

If Save and Cancel are enabled, then navigation, new and delete should not be

allowed.

When they are disabled, we should be able to navigate (first/last record exceptions),

insert a new and delete.

EnableNavigation enables or disables Next and Prev reflecting whether we show the

first or the last or any other record

We now start making calls to these procedures

 14

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 dataset.Fill(datatable)

 row = datatable.Rows(CurrentRow)

 Showdata()

 DisableSave()

 End Sub

 From the start Save and Cancel are not allowed, the others are.

 Private Sub btnNextRow_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnNextRow.Click

 CurrentRow += 1

 row = datatable.Rows(CurrentRow)

 Showdata()

 DisableSave()

 End Sub

 Private Sub btnPrevRow_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnPrevRow.Click

 CurrentRow -= 1

 row = datatable.Rows(CurrentRow)

 Showdata()

 DisableSave()

 End Sub

When we select a new record (Next or Prev) we need to disable save and cancel and

adjust the others. When we call Showdata, then we change the fields on the screen,

and as we see later, this triggers that we turn on Save.

 Private Sub btnSave_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnSave.Click

 If Not InsertMode Then

 row.BeginEdit()

 End If

 row.ID = Me.txtId.Text

 row.AE = Me.txtAE.Text

 row.AGREGFAM = Me.txtAGREGFAM.Text

 row.F1 = Me.txtF1.Text

 row.F2 = Me.txtF2.Text

 If Not InsertMode Then

 row.EndEdit()

 Else

 datatable.AddAgregadoRow(row)

 CurrentRow = datatable.Rows.Count - 1

 End If

 InsertMode = False

 dataset.Update(datatable)

 datatable.AcceptChanges(

 DisableSave()

 End Sub

 15

After saving a record (and possible having inserted a new record), we adjust

navigation and disable Save and Cancel.

 Private Sub btnCancel_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnCancel.Click

 If InsertMode Then

 row = datatable.Rows(CurrentRow)

 End If

 Showdata()

 DisableSave()

 End Sub

After cancel, we are in same situation as with save.

 Private Sub btnNew_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnNew.Click

 row = datatable.NewAgregadoRow

 Showdata()

 InsertMode = True

 EnableSave()

 End Sub

After new, we enable save and cancel and disable all other buttons

 Private Sub btnDelete_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnDelete.Click

 row.Delete()

 dataset.Update(datatable)

 datatable.AcceptChanges()

 If CurrentRow > datatable.Rows.Count - 1 Then

 CurrentRow = datatable.Rows.Count - 1

 End If

 row = datatable.Rows(CurrentRow)

 Showdata()

 DisableSave()

 End Sub

After delete, we make sure that navigation is OK. The new could the both last and

first!. And repair Cancel and save after showdata.

 Private Sub txtID_TextChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles txtId.TextChanged

 EnableSave()

 End Sub

 Private Sub txtAE_TextChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles txtAE.TextChanged

 EnableSave()

 End Sub

 Private Sub txtAGREGFAM_TextChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) _

 Handles txtAGREGFAM.TextChanged

 EnableSave()

 End Sub

 Private Sub txtF1_TextChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles txtF1.TextChanged

 EnableSave()

 16

 End Sub

 Private Sub txtF2_TextChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles txtF2.TextChanged

 EnableSave()

 End Sub

 Private Sub txtF3_TextChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles txtF3.TextChanged

 EnableSave()

 End Sub

Finally, whenever the user start to edit, we enable save and cancel and disables all

others. It does not matter if we are actually entering a new record or making multiple

changes. However, when we show a new record, we actually changes these data,

that’s why we call disable save each time we show data.

Now the user should not be able to make wrong navigation or use of the Save and

Cancel buttons.

Test

Handling data errors

Now, the user should not be able to crash the application due to making wrong

navigation. However, if the user enters invalid data or makes a dublicate key, the

system will still crash.

You need to handle this. Regarding wrong data, you could include intensive test for

each data item, before you actually tries to load it back to the database, or even using

the Validation event to catch such errors. You will however take a more simple

approach that however will catch errors.

The problem arises when you try to make an update or inset a new record, that is

when the user hits the Save button. New is not a problem and delete should not cause

problems even.

To fix the problem, we will concentrate on save and change it in the following way.

 Private Sub btnSave_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnSave.Click

 If Not InsertMode Then

 row.BeginEdit()

 End If

 row.ID = Me.txtId.Text

 row.AE = Me.txtAE.Text

 row.AGREGFAM = Me.txtAGREGFAM.Text

 row.F1 = Me.txtF1.Text

 row.F2 = Me.txtF2.Text

 If Not InsertMode Then

 Try

 row.EndEdit()

 17

 Catch ex As Exception

 MsgBox("Unable to edit row" + vbCrLf + ex.Message,

vbCritical)

 row.CancelEdit()

 Exit Sub

 End Try

 Else

 Try

 datatable.AddAgregadoRow(row)

 CurrentRow = datatable.Rows.Count - 1

 Catch ex As Exception

 MsgBox("Unable to add row" + vbCrLf + ex.Message,

vbCritical)

 Exit Sub

 End Try

 End If

 Try

 dataset.Update(datatable)

 Catch ex As Exception

 MsgBox("Unable to update row" + vbCrLf + ex.Message,

vbCritical)

 If Not InsertMode Then

 row.RejectChanges()

 Else

 row.Delete()

 End If

 Exit sub

 End Try

 InsertMode = False

 datatable.AcceptChanges()

 DisableSave()

 End Sub

row.EndEdit()causes the datatable object to test the validity of the data, at least if

keys as unique, that the length of an attribute does not exeed the maximum length etc.

In case of errors, an exception is raised. We Use the Try , Catch and End Try to

handle this. If there is an error, we inform the user with the message box, and then

cancel the edit operation. Then we leave save, so we are still in insert or edit mode

and the user may correct the errors and redo save or use cancel to end the edit or insert

state.

datatable.AddAgregadoRow(row) in the same way performs validation. There is no

clean up operation to perform.

dataset.Update(datatable) may fail for any number of reasons, so we pack it into

a Try , Catch and End Try to handle such errors. If we cannot update, we

RejectChanges, this will restore the state of the row as it was before the last

AcceptChanges (last successful save) or in the case of insert, we delete the row just

added (leaving it to further editing and another try).

You may from the offset think that a single Try , Catch and End could handle this,

the problem of this would be to get things cleaned up in a proper way.

 18

Empty database

So far, we have assumed that the database has at least one record. However, that may

not be the case, we may start with a completely empty database.

To solve this problem, if we have an empty database, or delete the last row, then the

system should enter Insert mode to allow us to the first record.

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 dataset.Fill(datatable)

 If datatable.Rows.Count = 0 Then

 row = datatable.NewRow

 Showdata()

 EnableSave()

 End If

 row = datatable.Rows(CurrentRow)

 Showdata()

 DisableSave()

 End Sub

 Private Sub btnDelete_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnDelete.Click

 row.Delete()

 dataset.Update(datatable)

 datatable.AcceptChanges()

 If datatable.Rows.Count = 0 Then

 row = datatable.NewRow

 Showdata()

 InsertMode = True

 EnableSave()

 Else

 If CurrentRow > datatable.Rows.Count - 1 Then

 CurrentRow = datatable.Rows.Count - 1

 End If

 row = datatable.Rows(CurrentRow)

 Showdata()

 DisableSave()

 End If

 End Sub

To provide a clue to the user, we are going to change the text on the Save, if the user

is in Insert Mode

 Private Sub EnableSave()

 If InsertMode Then

 Me.btnSave.Text = "Insert"

 Else

 Me.btnSave.Text = "Save"

 End If

 Me.btnSave.Enabled = True

 Me.btnCancel.Enabled = True

 Me.btnDelete.Enabled = False

 Me.btnNew.Enabled = False

 Me.btnPrevRow.Enabled = False

 19

 Me.btnNextRow.Enabled = False

 End Sub

Test

You have now completed building a small application that allow updates on a very

simple database table. A lot of things could be added, at least some labels on the user

interface, the title line in the form, maybe displaying actual record number and total

number of records etc. but for the purpose of this exercise that would just add noise.

